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1. Safe Primes

Exercise 1.

(a) Let p be a prime such that p = 2q + 1, where q is also prime.
We call p with this property a ‘strong’ prime (ambiguous term to
avoid) or rather a ‘safe’ prime. Let g be a generator of (Z/pZ)

∗
.

How can we generate a group of order q?
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2. Modular Inverses

A student proposed to compute the modular inverse of a mod n as
follows: a−1 = aφ(n)−1

Which theorem is this based on? When this is actually true?
Explain what are 3 serious problems with this method.

2.1. Bézout Theorem

Bézout’s Theorem: Let a and b be integers with greatest common
divisor

d = GCD(a, b).
Then, there exist integers x and y such that

ax+ by = d.
More generally, the integers of the form ax + by are exactly the

multiples of d.
Remarks. For integers it was known 150 years earlier. Bézout

shows that it holds also for polynomials, “Théorie générale des équations
algébriques”, Paris, France, 1779.
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2.2. Computing a modular inverse with [Extended] Euclid

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Click here for a reminder of the Extended Euclidean Algorithm.

Exercise 2. Let p and q be two distinct primes.

(a) Show how to use the extended Euclidean algorithm to simultane-
ously compute p−1 mod q and q−1 mod p.

(b) What is the complexity of this approach in terms of bit opera-
tions?

(c) Compute 11−1 mod 17 using this method.
(d) Implement the Extended Euclidean Algorithm in SAGE, and use

it to compute 7−1 mod 159.
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3. The Fermat Factorisation Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 3.

(a) Given that 1309 = 472 − 302, what is the prime factorisation of
1309?

(b) Let N, a, b be odd, positive integers such that N = ab. Show
that N can be expressed as the difference between two square
numbers.

(c) The incomplete function ‘Fermat’ implements a factorisation al-
gorithm. The function takes input N , and should output a, b such
that N = ab. Please fill in the question marks to obtain a com-
plete implementation of the Fermat factorisation algorithm.
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def fermat(N):
n = ceil(sqrt(N))
while ???:

M = n*n-N
m = floor(sqrt(M))
if m == sqrt(M):

return ???
n = n+1

(d) Use your completed code to find the factors ofN = 1488391, 1467181,
1456043. Can you see a connection between the running time of
your code and the prime factors of N?
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Solutions to Exercises

Exercise 1(a) The order of g is φ(p) = p− 1 = 2q. We can compute
g2 mod p, and this element will have order q, generating a subgroup
of size q. �
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Exercise 2(a) If necessary, swap p and q so that p > q. Since p and
q are distinct primes, gcd(p, q) = 1, and there exist integers A and B
such that Ap+Bq = 1. Then A = p−1 mod q and B = q−1 mod p.
We compute these using the Extended Euclidean Algorithm.

One way to implement the extended Euclidean Algorithm is to use
the back-tracking approach: work backwards in a GCD computation.
Otherwise, the following method allows the answer to be calculated
without working backwards.

Set r−1 = p and r0 = q. We also set A−1 = 1, A0 = 0, and B−1 =
0, B0 = 1. For each i, find ai+1, ri+1 such that ri−1 = ai+1ri + ri+1

as in the Euclidean Algorithm.

At each stage, compute Ai+1 = aiAi + Ai−1 and Bi+1 = aiBi +
Bi−1. These values satisfy Aip − Biq = (−1)i+1ri. When the al-
gorithm terminates after n steps, rn = gcd(p, q) = 1. We take
A = (−1)n+1An and B = (−1)nBn. �
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Exercise 2(b) The Extended Euclidean Algorithm requiresO(log(p)2)
bit operations. �
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ai Ai Bi

- - 1 0
- - 0 1

17 = 1 · 11 + 6 1 1 1
11 = 1 · 6 + 5 1 1 2
6 = 1 · 5 + 1 1 2 3

Figure 1: Gcd of 17 and 11

Exercise 2(c) Again, we can easily find the answer using the back-
tracking method. The alternative solution from an earlier part of the
question is shown below.

Set r−1 = 17, r0 = 11. Figure 1 shows working for the Extended
Euclidean Algorithm. We find that 2 · 17− 3 · 11 = 1. Therefore 11−1

mod 17 ≡ −3 ≡ 14.
�
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Exercise 2(d) The SAGE code shown implements the Extended Eu-
clidean Algorithm:

def gcd1(a,b):
if mod(a,b) == 0:

return [b,0,1]
else:

q = (a- (a%b) )/ b
[d, r, s]=gcd1(b,a-q*b)
return [d,s,r-q*s]

When run on 159 and 7, the output is [1, 3,−68], so the answer is
−68.

�
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Exercise 3(a) We have 1309 = (47 + 30)(47− 30) = 77 · 17. �
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Exercise 3(b) Write N =
(
a+b
2

)2 − (
a−b
2

)2
. Each bracketed expres-

sion is a whole number, because N is odd, so a, b are both odd, and
therefore a± b is even. �
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Exercise 3(c) The following code implements the Fermat Factorisa-
tion algorithm.

def fermat(N):
n = ceil(sqrt(N))
while True:

M = n*n-N
m = floor(sqrt(M))
if m == sqrt(M):

return [n+m,n-m]
n = n+1

�
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Exercise 3(d) The Fermat factorisation method finds factors of N
as n + m and n − m, where N = n2 − m2. The value of n + m is
at least

√
N and increases as n is incremented. Therefore, Fermat

factorisation runs fastest on integers N which have factors close to√
N . �

JJ II J I Back


	1 Safe Primes
	2 Modular Inverses
	2.1 Bézout Theorem
	2.2 Computing a modular inverse with [Extended] Euclid

	3 The Fermat Factorisation Algorithm
	 Solutions to Exercises



